CHAPTER 12

Digital Search Structures

12.1 DIGITAL SEARCH TREES

12.1.1 Definition

A digital search tree is a binary tree in which each node contains one element. The
element-to-node assignment is determined by the binary representation of the element
keys. Suppose that we number the bits in the binary representation of a key from left to
right beginning at one. Then bit one of 1000 is 1, and bits two, three, and four are 0. All
keys in the left subtree of a node at level i have bit ¢ equal to zero whereas those in the
right subtree of nodes at this level have bit i = 1. Figure 12.1(a) shows a digital search
tree. This tree contains the keys 1000, 0010, 1001, 0001, 1100, and 0000.

}1000 N 1000<

(0010) Qlomi (0010) <|001\
/ e

. va N

Cowi) (1100 (o001 (1100

/\ S e

¢ 00003 (00005 (0011)

(a) Initial tree (b) After 0011 inserted

Figure 12.1: Digital search trees

12.1.2 Search, Insert and Delete

Suppose we are to search for the key k = 0011 in the tree of Figure 12.1(a). & is first
compared with the key in the root. Since £ is different from the key in the root, and since
bit one of k is 0, we move to the left child, b, of the root. Now, since & is different from
the key in node b, and bit two of £ is 0, we move to the left child, d, of b. Since k is
different from the key in node d and since bit three of k is one, we move to the right child
of d. Node d has no right child to move to. From this we conclude that £ = 0011 is not in
the search tree. If we wish to insert k into the tree, then it is to be added as the right child
of d. When this is done, we get the digital search tree of Figure 12.1(b).

The digital search tree functions to search and insert are quite similar to the
corresponding functions for binary search trees. The essential difference is that the sub-
tree to move to is determined by a bit in the search key rather than by the result of the
comparison of the search key and the key in the current node. The deletion of an item in
a leaf is done by removing the leaf node. To delete from any other node, the deleted item
must be replaced by a value from any leaf in its subtree and that leaf removed.

Each of these operations can be performed in O(k) time, where £ is the height of
the digital search tree. If each key in a digital search tree has keySize bits, then the
height of the digital search tree is at most keySize + 1.

Binary Tries and Patricia 563

EXERCISES

1. Draw a different digital search tree than Figure 12.1 (a) that has the same set of
keys.

2. Write the digital search tree functions for the search, insert, and delete operations.
Assume that each key has keySize bits and that the function bit (k, i) returns the ith
(from the left) bit of the key k. Show that each of your functions has complexity
Ofh), where A is the height of the digital search tree.

122 BINARY TRIES AND PATRICIA

When we are dealing with very long keys, the cost of a key comparison is high. Since
searching a digital search tree requires many comparisons between pairs of keys, digital
search trees (and also binary and multiway search trees) are inefficient search structures
when the keys are very long. We can reduce the number of key comparisons done during
a search to one by using a related structure called Patricia {Practical algorithm to
retrieve information coded in alphanumeric). We shall develop this structure in three
steps. First, we introduce a structure called a binary trie (pronounced try’’). Then we
transform binary tries into compressed binary tries. Finatly, from compressed binary
tries we obtain Patricia. Since binary tries and compressed binary tries are introduced
only as a means of arriving at Patricia, we do not dwell much on how to manipulate these
structures. A more general version of binary tries (called a trie) is considered in the next
section.

12.2.1 Binary Tries

A binary trie is a binary tree that has two kinds of nodes: branch nodes and element
nodes. A branch node has the two data members lefrChild and rightChild. It has no data
data member. An element node has the single data member data. Branch nodes are used
to build a binary tree search structure similar to that of a digital search tree: This search
structure leads to element nodes.

Figure 12.2 shows a six-element binary irie. Element nodes are shaded. To search
for an element with key k, we use a branching pattern determined by the bits of k. The
ith bit of & is used at level i. If it is zero, the search moves to the left subtree. Otherwise,
it moves to the right subtree. To search for 0010 we first follow the left child, then again
the left child, and finally the right child. _

Observe that a successful search in a binary trie always ends at an-element node.
Once this element node is reached, the key in this node is compared with the key we are
searching for. This is the only key comparison that takes place. An unsuccessful search
may terminate either at an element node or at a 0 pointer,

Figure 12.2: Example of a binary trie

12.2.2 Compressed Binary Tries

The binary trie of Figure 12.2 contains branch nodes whose degree is one. By adding
another data member, bitNumber, to each branch node, we can eliminate all degree-one
branch nodes from the trie. The bitNumber data member of a branch node gives the bit
number of the key that is to be used at this node. Figure 12.3 gives the binary trie that
results from the elimination of degree-one branch nodes from the binary trie of Figure
12.2. The number outside a node is its bitNumber. A binary trie that has been modified
in this way to contain no branch nodes of degree one is calted a compressed binary trie.

12.2.3 Patricia

Compressed binary tries may be represented using nodes of a single type. The new
nodes, called augmented branch nodes, are the original branch nodes augmented by the
data member data. The resulting structure is called Patricia and is obtained from a
compressed binary trie in the following way:

(1) Replace each branch node by an augmented branch node.
(2) Eliminate the element nodes.
{3) Store the data previously in the element nodes in the data data members of the

Binary Tries and Patricia 565

:.100:1_ -

Figure 12.3: Binary trie of Figure 12.2 with degree-one nodes eliminated

augmented branch nodes. Since every nonempty compressed binary trie has one
less branch node than it has element nodes, it is necessary to add one augmented
branch node. This node is called the header node. The remaining structure is the
left subtree of the header node. The header node has bitNumber equal to zero. Its
rightChild data member is not used. The assignment of data to augmented branch
nodes is done in such a way that the bitNumber in the augmented branch node is
less than or equal to that in the parent of the element node that contained this data.

{4} Replace the original pointers to element nodes by pointers to the respective aug-
mented branch nodes.

When these transformations are performed on the compressed trie of Figure 12.3,
we get the structure of Figure 12.4. Let root be the root of Patricia. root is O iff the Patri-
cia is empty. A Patricia with one element is represented by a header node whose left-
child data member points to itself (Figure 12.5(a)). We can distinguish between pointers
that pointed originally to branch nodes and those that pointed to element nodes by noting
that, in Patricia, the former pointers are directed to nodes with a greater bitNumber
value, whereas pointers of the latter type are directed to nodes whose hitNumber value
either is equal to or less than that in the node where the pointer originates.

12.2.3.1 Searching Patricia

To search for an element with key &, we begin at the header node and follow a path
determined by the bits in &. When an element pointer is followed, the key in the node
reached is compared with k. This is the only key comparison made. No comparisons are

Figure 12.4: An example of Patricia

made on the way down. Suppose we wish to search for ¥ = 0000 in the Patricia instance
of Figure 12.4. We begin at the header node and follow the left-child pointer to the node
with 0000. The bit-number data member of this node is 1. Since bit one of is 0, we fol-
low the left child pointer to the node with 0010. Now bit three of & is used. Since this is
0, the search moves to the node with 0001. The bit-number data member of this node is
4. The fourth bit of k is zero, so we follow the left-child pointer. This brings us to a
node with bit-number data member less than that of the node we moved from. Hence, an
element pointer was used. Comparing the key in this node with &, we find a match, and
the search is successful.

Next, suppose that we are to search for k = 1011, We begin at the header node.
The search moves successively to the nodes with 0000, 1001, 1000, and 1001. kis com-
pared with 1001. Since k is not equal to 1001, we conclude that there is no element with
this key.

The function to search Patricia tree ¢ is given in Program 12.1. This function
returns, a pointer to the last node encountered in the search. If the key in this node is &,
the search is successful. Otherwise, ¢ contains no element with key k. The function
bit (i,7) returns the jth bit (the leftmost bit is bit one) of i, The C declarations used to
define a Patricia tree are:

Binary Tries and Patricia 567

typedef struct patricialree *patricia;
struct |
int bitNumber;
element data;
patricia leftChild, rightChild;
} patriciaTree;
patricia root;

patricla searchi{patricia t, unsigned k)

{/* search the Patricia tree t; return the last node
encountered; if k is the key in this last node, the
search 1s successfal */
patricia currentNode, nextNode;
if (!'t) return NULL; /* empty tree */
nextNode = t—=leftChild;
currentNode = t;
while (nextNode—bitNumber > currentNode—sbitNumber) |

currentNode = nextNode;
nextNode = {bit{k, nextNode—bhitNumber)) 7
nextNode—rightChild : nextNode—leftChild;
}
return nextNode;

Program 12.1: Searching Patricia

12.2.3.2 Inserting into Patricia

Let us now examine how we can insert new elements. Suppose we begin with an empty
instance and wish to insert an element with key 1000. The result is an instance that has
only a header node (Figure 12.5(a)}). Next, consider inserting an clement with key & =
0010. First, we search for this key using function Search (Program 12.1). The search
terminates at the header node. Since 0010 is not equal to the key ¢ = 1000 in this node,
we know that 0010 is not currently in the Patricia instance, so the element may be
inserted. For this, the keys & and g are compared to determine the first {i.e., leftmost) bit
al which they difler. This is bit one. A new node containing the element with key & is
added as the left-child of the header node. Since bit one of & is zero, the left child data
member of this new node points Lo itsell, and its right-child duta member points to the
header node. The bit number data member is set to 1. The resulting Patricia instance 15
shown in Figure [2.5(b).

Froot 0 o
0 / f] 000 5
&@) B “‘1 \
0010 \
(a) 1000 inserted e
(b) 0010 inserted 4

(d) 1100 inserted (e) 0000 inserted

(f) 0001 inserted

Figure 12.5: Insertion into Patricia

Binary Tries and Patricia 569

Suppose that the next element to be inserted has k = 1001, The search for this key
ends at the node with g = 1000. The first bit at which & and ¢ differ is bit j = 4. Now we
search the instance of Figure 12.5(b) using only the first j — 1 = 3 bits of k. The last
move is from the node with 0010 to that with 1000. Since this is a right-child move, a
new node containing the element with key & is to be inserted as the right child of 0010.
The bit-number data member of this node is set to j = 4, As bit four of & is 1, the right-
child data member of the new node points to itself and its left-child data member points
to the node with g. Figure 12.5(c) shows the resulting structure,

To insert & = 1100 into Figure 12.5(c), we first search for this key. Once again, g =
1000. The first bit at which & and ¢ differ is j = 2. The search using only the first j — 1
bits ends at the node with 1001. The last move is a right child move from 0010. A new
node containing the element with key k and bit-number data member j = 2 is added as
the right child of 0010. Since bit j of & is one, the right-child data member of the new
node points to itself. Its left-child data member points to the node with 1001 (this was
previously the right child of 0010). The new Patricia instance is shown in Figure
12.5(d). Figure 12.5(e) shows the result of inserting an element with key 0000, and Fig-
ure 12.5(f) shows the Patricia instance following the insertion of 0001.

The preceding discussion leads to the insertion function irsert of Program 12.2,
Tts complexity is seen to be O(h) where h is the height of £. & can be as large as
min{keySize + |, n} where keySize is the number of bits in a key and # is the number of
elements. When the keys are uniformly distributed the height is O(logn). We leave the
development of the deletion procedure as an exercise.

vold insert(patricia *t, element theElement)
{/* insert theElement into the Patricia tree *t */
patricia current, parent, lastNode, newNode;
int i;
if (1 (*t)) {/* empty tree */
MALLOC(*t, sizeof(patriciaTree));
(*t)—bitNumber = 0; (*t)—data = theElement;
(*tYy=-»leftChild = *t;

}

lastNode = search{*t, theElement.key};

if {theElement.key == lastNode—data.key) |
fprintf {stderr, "The key is in the tree. Insertion

fails.\n");

exXit (EXIT_FAILURE) ;

}

/* find the first bit where theEiement.key and
lastNode—data.key differ */

for (i = 1; bit(theElement.key,1) ==
bit (lastNede—data.key,1); i++);

/% gearch tree using the first i-1 bits */
current -~ (*ty-—-leftChild; parent = *t;
while (current—bitNumber » parent—bitNumber &&
current—bitNumber < i) {
parent = current;
current = (bit(theElement.key, current—bitNumber})
current—rightChild : current—leftChild;

/* insert theFlement as a child of parent */

MALLOC (newNode, sizeof (patriciaTree});

newNode—data = theElement; newNode—-bitNumber = i;

newNode—-leftChild = (bit(theElement.key,i})) ?
current: newNode;

newNode—rightChild = (bit (theElement.key,i)) ?
newNode : current;

if (current == parent—leftChild)

parent—leftChild = newNode;
else parent—rightChild = newNode;

?

Program 12.2: Insertion function for Patricia

EXERCISES

e

Write the binary trie functions for the search, insert, and delete operations.
Assume that each key has keySize bits and that the function bir (k, i) returns the ith
(from the left) bit of the key & Show that each of your functions has complexity

Oih). where I is the height of the binary trie.

Write the compressed binary trie functions for the search, insert, and delete opera-
tions. Assume that each key has keySize bits and that the function bit (k, i) returns
the fth (from the left) bit of the key k. Show that each of your functions has com-

plexity O(1). where fiis the height of the compressed binary trie,

Wiite a function to delete the element with key & from a Patricia. The complexity
ol your function should be O(r), where /1 is the height of the Patricia instance.

Show that this is the case.

Multiway Tries 571

12.3 MULTIWAY TRIES

12.3.1 Definition

A multiway trie (or, simply, trie) is a structure that is particularly useful when key values
are of varying size. This data structure is a generalization of the binary trie that was
developed in the preceding section.

A trie is a tree of degree m 2 2 in which the branching at any level is determined
not by the entire key value, but by only a portion of it. As an example, consider the ric
of Figure 12.6 in which the keys are composed of lowercase letters from the English
alphabet. The trie contains two types of nodes: element, and branch. In Figure 12.6, ¢le
ment nodes are shaded while brapchwnodes.aze. not shaded. An'element node. has only o
data field; a branch node contains pointers to subtrees. In Figure 12.6, each branch node
has 27 pointer fields. The extra pointer field is used for the blank character (denowed by,
This character is used to terminate all keys, as a trie requires that no key be a pretix of
another (see Figure 12.7).

Bluebird | [bunti \ d - AN
uebird | | bunting | { \ IWT {N!'H_guu g il
[cardinal | [chickadee \
| godwit | | goshawk | A2
Lyl 14!
/’Jd \

[thrasher 3 { thrush

Figure 12.6: Trie created using characters of key value from left to right, one at a time

At the first level all key values are partitioned into disjoint classes depending on
their first character. Thus, root —child [i] points to a subtrie containing all key values
beginning with the ith letter. On the jth tevel the branching is determined by the jth
character. When a subirie contains only one key value, it is replaced by a node of type

Figure 12.7: Trie showing need for a terminal character (in this case a blank)

eiement. This node contains the key value, together with other relevant information, such
as the address of the record with this key value.

As another example of a trie, suppose that we have a collection of student records
that contain fields such as student name, major, date of birth, and social security number
(S5#). The key field is the social security namber, which is a nine digit decimal number.
To keep the example manageable, assume that we have a total of five elements. Figure
12.8 shows the name and S8# fields for each of these five elements.

Name SS#

Jack 951-94-1654
Jil . 562-44-2169
Bill 271-16-3624
Kathy 278-49-1515
April 951.23-7625

Figure 12.8: Five elements (student records)

To obtain a trie representation for these five elements, we first select a radix that
will be used to decompose each key into digits. If we use the radix 10, the decomposed
digits are just the decimal digits shown in Figure 12.8. We shall examine the digits of the
key field (i.c., SS#) from left to right. Using the first digit of the S8S#, we partition the

Multiway Tries 573

elements into three groups—elements whose SS# begins with 2 (i.e., Bill and Kathy),
those that begin with 5 (i.e., Jill}, and those that begin with 9 (i.e., Aprl and Jack).
Groups with more than one element are partitioned using the next digit in the key. This
partitioning process is continued until every group has exactly one element in it.

The partitioning process described above naturally results in a tree structure that
has 10-way branching as is shown in Figure 12.9. The tree employs two types of
nodes—branch nodes and element nodes. Each branch node has 10 children {or pointer)
fields. These fields, child [0:9], have been labeled 0,1, - - - .9 for the root node of Figure
12.9. root.child {i] points to the root of a subtrie that contains all elements whose first
digit is i. In Figure 12.9, nodes A,B,D,E,F, and I are branch nodes. The remaining
nodes, nodes C,G,H,J, and K are element nodes. Fach element node contains exactly
one element. In Figure 12.9, only the key field of each element is shown in the element
nodes.

0123456789

Figure 12.9: Trie for the elements of Figure 12.8

12.3.2 Searching a Trie

To search a trie for a key, x, we must break x into its constituent characters and follow
the branches determined by these characters. The function search (Program 12.3)
assumes that p—u . key is the key represented in node p if p is an element node and that a
blank has been appended to the search key before invocation. The function invocation is
search {t,key, 1). search uses the function getlndex (kev,i) which performs the ith tevel
sampling of the key. In the case of left to right single character sampling, this function
extracts the ith character of the key and converts it to an integer index that teils us which
pointer field of the branch node to use.

triePeointer search(triePointer t, char *key, int 1)
{/* search the trie t, return NULL if there is no
element with this key, otherwise return a pointer
to the node with the matching element */
if (!t) return NULL; /* not found */
if (t—tag == data)
return {(strcmp(t—key,key)) ? NULL : t};
return search{t~child[getIndex(key,1)], key, 1+1};
}

Program 12.3: Searching a trie

Analysis of search: The search function is straightforward and we may readily verify
that the worst case search time is O(/), where ! is the number of levels in the trie (includ-
ing both branch and element nodes). O

12.3.3 Sampling Strategies

Given a set of key values to be represented in an index, the number of levels in the trie
will depend on the strategy or key sampling technique used to determine the branching
at each level. This can be defined by a sampling function, sample (x,i), which appropri-
ately samples x for branching at the ith level. In the trie of Figure 12.6 and in the search
function of Program 2.4, the sampling function is sample (x,i) = ith character of x.
Some other choices for this function are

(1) sample(x,i) =x,_;,,

(2) sample (x,i) = x,y;, for r(x,i) a randomization function

Multiway Tries 575

, X0 if i is even
() sample (x.i) = Xy_i—ne it i is odd
where x = x;x, - - x,.

For each of these functions, one may easily construct key value sets for which the
particular function is best (i.e., it results in a trie with the fewest number of levels). The
trie of Figure 12.6 has five levels. Using function (1) on the same key values yields the
trie of Figure 12.10, which has only three levels. An optimal sampling function for this
data set will yield a trie that has only two levels (Figure 12.11). Choosing the optimal
sampling function for any particular set of values is very difficult. In a dynamic situa-
tion, with insertion and deletion, we wish to optimize average performance. In the
absence of any further information on key values, the best choice would probably be
function (2).

babcdefghijkI1I mnopqrstuyvwzxysz

HEEENNENNEENNENEEEnENEEEEEn

bluebird |bunting \goshawlﬂ | wren | [thrasher| [godwit |
bl

thrush | 2
LN L] - 5

[J ’cardi_nai[: gull
\chickadeeH oriole \

e |

Figure 12.10: Trie constructed for data of Figure 12.6 sampling one character at a time,
from right to left

Although all our examples of sampling have involved single-character sampling
we need not restrict ourselves to this. The key value may be interpreted as consisting of
digits using any radix we desire. Using a radix of 27° would result in two-character sam-
pling. Other radixes would give different samplings.

The maximum number of levels in a trie can be kept low by adopting a different
strategy for element nodes. These nodes can be designed to hold more than one key
vatue. H the maximum number of levels allowed is /, then all key values that are
synonyms up to fevel [— | are entered into the same element node. If the sampling func-
tion is chosen correctly, there will be only a few synonyms in each element node. The
element node will therefere be small and can be processed in internal memory. Figure
12.12 shows the use of this strategy on the trie of Figure 12.6 with ! = 3. In further

babcde fghijklmnopagrrsituvwixyz

ANENNNEENEEENENNEREENNENEEE

| 1

o (] (o]

Figure 12.11: An optimal trie for the data of Figure 12.6 sampling on the first level done
by using the fourth character of the key values

discussion we shall, for simplicity, assume that the sampling function in use is
sample (x,i) = ith character of x and that no restriction is placed on the number of levels
in the trie.

babcdefghijk!Imnopgqrstuvwzxyz

Figure 12.12: Trie obtained for data of Figure 12.6 when number of levels is limited to
3; keys have been sampled from left to right, one character at a time

Multiway Tries 577

12.3.4 Insertion into a Trie

Insertion into a trie is straightforward. We shall illustrate the procedure by two examples
and leave the formal writing of the algorithm as an exercise. Let us consider the trie of
Figure 12.6 and insert into it the keys bobwhite and bluejay. First, we have x = bobwhite
and we attempt to search for bobwhite. This leads wus to node 6, where we discover that
o.link['0’] = 0. Hence, x is not in the trie and may be inserted here (see Figure 12.13).
Next, x = bluejay, and a search of the trie leads vs to the element node that contains
bluebird. The keys biuebird and bluejay are sampled until the sampling results in two
different values. This happens at the fifth letter. Figure 12.13 shows the trie after both
insertions.

& [

& 1y o |

b j
& 1] n

p[bluebird] | Blucjay |

Figure 12.13: Section of trie of Figure 12.6 showing changes resulting from inserting
bobwhite and bluejay

12.3.5 Deletion from a Trie

Once again, we shall not present the deletion algorithm formally but will look at two
examples to illustrate some of the ideas involved in deleting entries from a trie. From the

trie of Figure 12.13, let us first delete bobwhite. To do this we set 6.link[‘0’] equal to 0.
No other changes need to be made. Next, let us delete bluejay. This deletion leaves us
with only one key value in the subtrie, 85. This means that the node 8; may be deleted,
and p can be moved up one level. The same can be done for nodes 8, and 6,. Finally,
the node ¢ is reached. The subtrie with root ¢ has more than one key value. Therefore,
p cannot be moved up any more levels, and we set 6.link['I’| equal to p. To facilitate
deletions from tries, it 18 useful to add a count data member in each branch node. This
data member contains the number of children the node has.

As in the case of binary tries, we can define compressed tries in which each branch
node has at least two children. In this case, each branch node is augmented 1o have an
additional data member, skip, that indicates the number of levels of branching that have
been eliminated (alternately, we can have a data member, sample, that indicates the sam-
pling level to use).

12.3.6 Keys With Different Length

As noted carlier, the keys in a trie must be such that no key is a prefix of another. When
all keys are of the same length, as is the case in our S8# example of Figure 12.9, this pro-
perty is assured. But, when keys are of different length, as is the case with the keys of
Figure 12.6, it is possible for one key to be a prefix of another, A popular way 10 handle
such key collections is to append a special character such as a blank or a # that doesn’t
appear in any key to the end of each key. This assures us that the modified keys (with the
special character appended) satisfy the no-prefix property.

An alternative to adding a special character at the end of each key is to give each
node a data fieid thar is used to store the element (if any) whose key exhausts at that
node. So, for example, the element whose key is 27 can be stored in node £ of Figure
12.9. When this alternative is used, the search strategy is modified so that when the digits
of the search key are exhausted, we examine the dare tield of the reached node. If this
data field is empty, we have no element whose key equals the search key. Otherwise, the
desired element is in this data field.

It is important to note that in applications that have different length keys with the
property that no key is a prefix of another, neither of the just-mentioned strategies is
needed.

12.3.7 Height of a Trie

In the worst case, a root-node to element-node path has a branch node for every digit in a
key. Therefore, the height of a trie is at most numberafdigits +1.

A trie for social security numbers has a height that is at most 10. If we assume that
it takes the same time t0 move down one level of a trie as it does to move down one level

Multiway Tries 579

of a binary search tree, then with at most 10 moves we can search a social-security trie.
With this many moves, we can search a binary search tree that has at most 210 1 =1023
elements. This means that, we expect searches in the social security trie to be faster than
searches in a binary search tree (for student records) whenever the number of student
records is more than 1023. The breakeven point will actually be less than 1023 because
we will normally not be able to construct full or complete binary search trees for our ele-
ment collection. '

Since a SS# is nine digits, a social security trie can have up to 10° elements in it.
An AVL tree with 10” elements can have a height that is as much as (approximately)
l.4410g2(]09+2) = 44, Therefore, it could take us four times as much time to search for
elements when we organize our collection of student records as an AVL tree rather than
as a trie!

12.3.8 Space Required and Alternative Node Structures

The use of branch nodes that have as many child fields as the radix of the digits (or one
more than this radix when different keys may have different length) results in a fast
search algorithm. However, this node structure is often wasteful of space because many
of the child fields are NULL. A radix r trie for d digit keys requires O(rdn) child fields,
where n is the number of elements in the trie. To see this, notice that in a d digit trie with
n element nodes, each element node may have at most d ancestors, each of which is a
branch node. Therefore, the number of branch nodes is at most dn. (Actually, we cannot
have this many branch nodes, because the element nodes have common ancestors like
the root node.}

We can reduce the space requirements, at the expense of increased search time, by
changing the node structure. Some of the possible alternative structures for the branch
node of a trie are considered below.

A chain of nodes.
Each node of the chain has the three fields digitValue, child, and next. Node E of Figure
12.9, for example, would be replaced by the chain shown in Figure 12.14.

Figure 12.14: Chain for node E of Figure 12.9

The space required by a branch node changes from that required for r

children/pointer fields to that required for 2p pointer fields and p digit value fields, where
p is the number of children fields in the branch node that are not NULL. Under the
assumption that pointer fields and digit value ficlds are of the same size, a reduction in
space is realized when more than two-thirds of the children fields in branch nodes are
NULL. In the worst case, almost all the branch nodes have only 1 field that is not
NULL and the space savings become almost (1-3/r)*100%.

A (balanced) binary search tree.
Each node of the binary search tree has a digit value and a pointer to the subtrie for that
digit value. Figure 12.15 shows the binary search tree for node E of Figure 12.9.

.G

77\

8.H

Figure 12.15: Binary search tree for node E of Figure 12.9

Under the assumption that digit values and pointers take the same amount of
space, the binary search tree representation requires space for 4p fields per branch node,
because each search tree node has fields for a digit value, a subtrie pointer, a left child
pointer, and a right child pointer. The binary search tree representation of a branch node
saves us space when more than three-fourths of the children fields in branch nodes are
NULL. Note that for large r, the binary search tree is faster to search than the chain
described above.

A binary trie.
Figure 12.16 shows the binary trie for node E of Figure 12.9. The space required by a
branch node represented as a binary trie is at most 2+ [log,r] +1)p.

A hash table.

When a hash table with a sufficiently small loading density is used, the expected time
performance is about the same as when the node structure of Figure 12.9 is used. Since
we expect the fraction of NULL child fields in a branch node to vary from node to node
and also to increase as we go down the trie, maximum space efficiency is obtained by
consolidating all of the branch nodes into a single hash table. To accomplish this, each
node in the trie is assigned a number, and each parent to child pointer is replaced by a
triple of the form (currentNode digitValue childNode). The numbering scheme for

Multiway Tries 581

01

Figure 12.16: Binary trie for node E of Figure 12.9

nodes is chosen so as to easily distinguish between branch and element nodes. For exam-
ple, if we expect to have at most 100 elements in the trie at any time, the numbers 0
through 99 are reserved for element nodes and the numbers 100 on up are used for
branch nodes. The element nodes are themselves represented as an array element [100].
(An alternative scheme is to represent pointers as tuples of the form
(currentNode digitValue,childNode ,childNodelsBranchNode), where childNodelsBran-
chNode = true iff the child is a branch node.)

Suppose that the nodes of the trie of Figure 12.9 are assigned numbers as given in
Figure 12,17, This number assignment assumes that the trie will have no more than 10
elements.

Node A B C b E F G H I I KX
Number 10 11 0 12 13 14 1 2 15 3 4

Figure 12.17: Number assignment to nodes of trie of Figure 12.9

The pointers in node A are represented by the tuples (10,2,11),(10,5,0), and
(10,9,12). The pointers in node E are represented by the tuples (13,1,1) and (13,8,2).

The pointer triples are stored in a hash table using the first two fields (i.e., the
currentNode and digitValue) as the key. For this purpose, we may transform the two
field key into an integer using the formula currentNode *r+digitValue, where r is the trie
radix, and use the division method to hash the transformed key into a home bucket. The
data presently in element node i is stored in element [i].

To see how all this works, suppose we have set up the trie of Figure 12.9 using the
hash table scheme just described. Consider searching for an element with key 278-49-
1515. We begin with the knowledge that the root node is assigned the number $0. Since

the first digit of the search key is 2, we query our hash table for a pointer triple with key
(10,2). The hash table search is successful and the triple (10.2,11} is retrieved. The
childNode component of this triple is 11, and since all element nodes have a number 9 or
less, the child node is determined to be a branch node. We make a move to the branch
node 11. To move to the next level of the trie, we use the second digit 7 of the search
key. For the move, we query the hash table for a pointer with key (11,7). Once again, the
search is successful and the triple (11,7,13) is retrieved. The next query to the hash table
is for a triple with key (13,8). This time, we obtain the triple (13,8,2). Since, childNode
= 2 < 10, we know that the pointer gets us to an element node. So, we compare the
search key with the key of element |2|. The keys match, and we have found the element
we were looking for.

When searching for an element with key 322-16-8976, the first query is for a triple
with key (10,3). The hash table has no triple with this key, and we conclude that the trie
has no element whose key equals the search key.

The space needed for each pointer triple is about the same as that needed for each
node in the chain of nodes representation of a trie node, Therefore, if we use a lincar
open addressed hash table with a loading density of o, the hash table scheme will take
approximately (1/0—1)%100% more space than required by the chain of nodes scheme.
However, when the hash table scheme is used, we can retrieve a pointer in O(1) expected
time, whereas the time to retrieve a pointer using the chain of nodes scheme is O(r}.
When the (balanced) binary search tree or binary trie schemes are used, it takes O(logr)
time to retrieve a pointer. For large radixes, the hash table scheme provides significant
space saving over the scheme of Figure 12.9 and results in a small constant factor degra-
dation in the expected time required to perform a search.

The hash table scheme actually reduces the expected time to insert elements into a
trie, because when the node structure of Figure 12.9 is used, we must spend O(r) time to
inttialize each new branch node (see the description of the insert operation below). How-
ever, when a hash table is used, the insertion time is independent of the trie radix.

To support the removal of elements from a trie represented as a hash table, we
must be able to reuse element nodes. This reuse is accomplished by setting up an avail-
able space list of element nodes that are currently not in use.

12.3.9 Prefix Search and Applications

You have probably realized that to search a trie we do not need the entire key. Most of
the time, only the first few digits (i.e., a prefix) of the key is needed. For example, our
search of the trie of Figure 12.9 for an element with key 951-23-7625 used only the first
four digits of the key. The ability to scarch a trie using only the prefix of a key enables us
to use tries in applications where only the prefix might be known or where we might
desire the user o provide only a prefix. Some of these applications are described below.

Multiway Tries 583

Criminelogy: Suppose that you are at the scene of a crime and observe the first few
characters CRX on the registration plate of the getaway car. If we have a trie of registra-
tion numbers, we can use the characters CRX to reach a subtrie that contains all registra-
tion numbers that begin with CRX. The elements in this subtrie can then be examined to
see which cars satisfy other properties that might have been observed.

Automatic Command Completion: When using an operating system such as Unix or
Windows (command prompt}), we type in system commands to accomplish certain tasks.
For example, the Unix and DOS command cd may be used to change the current direc-
tory. Figure 12.18 gives a list of commands that have the prefix ps (this list was obtained
by executing the command Is /usr/local/bin/ps® on a Unix system).

ps2ascii ps2pdf psbook psmandup psselect
ps2epsi ps2pk pscal psmerge pstopnim
ps2frag ps2ps psidtopgm psnup pstops
ps2gif psbb pslatex psresize pstruct

Figure 12.18: Commands that begin with "ps"

We can simplify the task of typing in commands by providing a command comple-
tion facility which automatically types in the command suffix once the user has typed in
a long enough prefix to uniquely identify the command. For instance, once the letters psi
have been entered, we know that the command must be psidtopgm because there is only
one command that has the prefix psi. In this case, we replace the need to type in a 9 char-
acter command name by the need to type in just the first 3 characters of the command!

A command completion system is easily implemented when the commands are
stored in a trie using ASCII characters as the digits. As the user types the command
digits from left to right, we move down the trie. The command may be completed as
soon as we reach an element node. If we fall off the trie in the process, the user can be
informed that no command with the typed prefix exists.

Although we have described command completion in the context of operating sys-
tem commands, the facilty is useful in other environments:

(1) A web browser keeps a history of the URLs of sites that you have visited. By
organizing this history as a trie, the user need only type the prefix of a previously
used URL and the browser can complete the URL.

(2) A word processor can maintain a collection of words and can complete words as
you type the text. Words can be completed as soon as you have typed a long
enough prefix to identify the word uniquely.

(3) An automatic phone dialler can maintain a list of frequently called tetephone
numbers as a tric. Once you have punched in a long enough prefix to uniquely
identify the phone number, the dialter can complete the calt for you.

12.3.10 Compressed Tries

Take a close look at the trie of Figure 12.9. This trie has a few branch nodes (nodes B,D,
and F) that do not partition the elements in their subtrie into 1wo or more nonempty
groups. We often can improve both the time and space performance metrics of a trie by
eliminating all branch nodes that have only one child. The resulting trie is called a
compressed trie.

When branch nodes with a single child are removed from a trie, we need to keep
additional information so that trie operations may be performed correctly. The additional
information stored in three compressed trie structures is described below,

12.3.10.1 Compressed Tries with Digit Numbers

In a compressed trie with digit numbers, each branch node has an additional field
digitNumber that tells us which digit of the key is used to branch at this node. Figure
12.19 shows the compressed trie with digit numbers that corresponds to the trie of Figure
12.9. The leftmost ficld of each branch node of Figure 12.19 is the digitNumber field.

AD123456789
i

Figure 12.19: Compressed trie with digit numbers

Multiway Tries 585

12.3.10.2 Searching a Compressed Trie with Digit Numbers

A compressed trie with digit numbers may be searched by following a path from the
root. At each branch node, the digit, of the search key, given in the branch node’s
digitNumber field is used to determine which subtrie to move to. For example, when
searching the trie of Figure 12.19 for an element with key 951-23-7625, we start at the
root of the trie. Since the root node is a branch node with digitNumber=1, we use the
first digit 9 of the search key to determine which subtrie to move to. A move to node
A.child [9]=I is made. Since, I.digitNumber=4, the fourth digit, 2, of the search key tells
us which subtrie to move to. A move is now made to node Lckild [2]1=). We are now at
an element node, and the search key is compared with the key of the element in node J.
Since the keys match, we have found the desired element.

Notice that a search for an element with key 913-23-7625 also terminates at node
J. However, the search key and the element key at node J do not match and we conclude
that the trie contains no element with key 913-23-7625.

12.3.10.3 Inserting into a Compressed Trie with Digit Numbers

To insert an element with key 987-26-1615 into the trie of Figure 12.19, we first search
for an element with this key. The search ends at node J. Since, the search key and the
key, 951-23-76235, of the element in this node do not match, we conclude that the trie has
no element whose key matches the search key. To insert the new element, we find the
first digit where the search key differs from the key in node J and create a branch node
for this digit. Since, the first digit where the search key 987-26-1615 and the element key
951-23-7625 differ is the second digit, we create a branch node with digitNumber =2,
Since, digit values increase as we go down the trie, the proper place to insert the new
branch node can be determined by retracing the path from the root to node J and stop-
ping as soon as either a node with digit value greater than 2 or the node J is reached. In
the trie of Figure 12.19, this path retracing stops at node I. The new branch node is made
the parent of node /, and we get the trie of Figure 12.20.

Consider inserting an element with key 958-36-4194 into the compressed trie of
Figure 12.19. The search for an element with this key terminates when we fall of the trie
by following the pointer Lchild [3]=NULL. To complete the insertion, we must first find
an element in the subtrie rooted at node 7. This element is found by following a down-
ward path from node 7 using (say) the first non NULL link in each branch node encoun-
tered. Doing this on the compressed trie of Figure 12.19, leads us to node J. Having
reached an element node, we find the first digit where the element key and the search key
differ and complete the insertion as in the previous example. Figure 12.21 shows the
resulting compressed trie.

Because of the possible need to search for the first non NULL child pointer in
each branch node, the time required to insert an element into a compressed tries with

A 0123456789
]

/
E g C

Figure 12.20: Compressed trie following the insertion of 987-26-1615 into the
compressed trie of Figure 12.19

digit numbers is O(rd), where r is the trie radix and 4 is the maximum number of digits
in any key.

12.3.10.4 Deleting an Element from a Compressed Trie with Digit Numbers
To delete an element whose key is &, we do the following;

(1) Find the element node X that contains the element whose key is k.
(2) Discard node X.

(3) If the parent of X is left with only one child, discard the parent node also. When
the parent of X is discarded, the sole remaining child of the parent of X becomes a
child of the grandparent (if any) of X.

To remove the element with key 951-94-1654 from the compressed trie of Figure
12.21, we first locate the node K that contains the element that is to be removed. When
this node is discarded, the parent 7 of X is left with only one child. Consequently, node /

Multiway Tries 587

A 0123456789
1

Figure 12.21: Compressed trie following the insertion of 958-36-4194 into the
compressed trie of Figure 12.19

is also discarded, and the only remaining child J of node 7 is the made a child of the
grandparent of K. Figure 12.22 shows the resulting compressed trie.

Because of the need to determine whether a branch node is left with two or more
chiidren, removing a d digit element from a radix r trie takes O{d +r} time,

12.3.11 Compressed Tries with Skip Fields

In a compressed trie with skip fields, each branch node has an additional field skip which
tells us the number of branch nodes that were originalty between the current branch node
and its. parent. Figure 12.23 shows the compressed trie with skip fields that corresponds
to the trie of Figure 12.9. The leftmost field of each branch node of Figure 12.23 is the
skip field.

The algorithms to search, insert, and remove are very similar to. those used for a
compressed trie with digit numbers.

A 0123456789

J
Ui
E "5 C L 8
3 562-44-2169 3
G H J M

Figure 12.22: Compressed trie following the removal of 951-94-1654 from the
compressed trie of Figure 12.21

A 0123456789

0
| |
E | s ¢ | L 9
1 [562442169 2
G / H J / K \
271-16-3624 | 278-49-1515 951-23-7625.| | 951-94-1654.

Figure 12.23: Compressed trie with skip fields

12.3.12 Compressed Tries with Labeled Edges

In a compressed trie with labeled edges, each branch node has the following additional
information assoctated with it: a pointer/reference element to an element (or element

Multiway Tries 589

node) in the subtrie, and an integer skip which equals the number of branch nodes elim-
inated between this branch node and its parent. Figure 12.24 shows the compressed trie
with labeled edges that corresponds to the trie of Figure 12.9. The first field of each
branch node is its element field, and the second field is the skip field.

A 0123456789

lc‘ol il
i LI
7 \
E 1 g C I ™™g 9
@1 562-44-2169 1 12
AR AN
271-16-3624 | | 278-49-1515 951-23-7625 | | 951-94-1654

Figure 12.24: Compressed trie with labeled edges

Even though we store the *““label’” with branch nodes, it is convenient to think of
this information as being associated with the edge that comes into the branch node from
its parent (when the branch node is not the root). When moving down a trie, we follow
edges, und when an edge is followed. we skip over the number of digits given by the skip
field of the edge information. The value of the digits that are skipped over may be deter-
mined by using the element field.

When moving from node A to node [of the compressed trie of Figure 12.24, we
use digit 1 of the key to determine which child field of A is to be used. Also, we skip over
the next 2 digits, that is, digits 2 and 3, of the keys of the elements in the subtrie rooted at
1. Since all elements in the subtrie I have the same value for the digits that are skipped
over, we can determine the value of these skipped over digits from any of the elements in
the subtrie, Using the element field of the edge label, we access the element node J, and
determine that the digits that are skipped over are 5 and |.

12.3.12.1 Searching a Compressed Trie with Labeled Edges

When searching a compressed trie with labeled edges, we can use the edge label to ter-
minitte unsuccessiul searches (possibly) before we reach an element node or fall off the
trie. As in the other compressed trie variants, the scarch is done by following a path

from the root. Suppose we are searching the compressed trie of Figure 12.24 for an ele-
ment with key 921-23-1234. Since the skip value for the root node is 0, we use the first
digit 9 of the search key to determine which subtrie to move to. A move to node
A.child [9]=I is made. By examining the edge label (stored in node 1), we determine that,
in making the move from node A 1o node I, the digits 5 and 1 are skipped. Since these
digits do not agree with the next two digits of the search key, the search terminates with
the conclusion that the trie contains no element whose key equals the search key.

12.3.12.2 Inserting into a Compressed Trie with Labeled Edges

To insert an element with key 987-26-1615 into the compressed trie of Figure 12.24, we
first search for an element with this key. The search terminates unsuccessfully when we
move from node A to node [because of a mismatch between the skipped over digits and
the corresponding digits of the search key. The first mismatch is at the first skipped over
digit. Therefore, we insert a branch node L between nodes A and I. The skip value for
this branch node is 0, and its element field is set to reference the element node for the
newly inserted element. We must also change the skip value of [to 1. Figure 12.25
shows the resulting compressed trie.

A 0123456789
clo

Figure 12.25: Compressed trie (with labeled edges) following the insertion of
987-26-1615 into the compressed trie of Figure 12.24

Mutltiway Tries 591

Suppose we are to insert an element with key 958-36-4194 into the compressed
trie of Figure 12.25. The search for an element with this key terminates when we move
to node I because of a mismatch between the digits that are skipped over and. the
corresponding digits of the search key. A new branch node is inserted between nodes A
and { and we get the compressed trie that is shown in Figure 12.26.

A 0123456789

Eo

E | g C \8

di sadeaie] M

G H \ I 2 g M

Figure 12.26: Compressed trie (with labeled edges) following the insertion of
958-36-4194 into the compressed trie of Figure 12.24

The time required to insert a d digit element into a radix r compressed trie with
labeled edges is O(r +d).

12.3.12.3 Deleting an Element from a Compressed Trie with Labeled Edges

This is similar to removal from a compressed trie with digit numbers except for the need
to update the element fields of branch nodes whose element ficld references the removed
element,

12.3.13 Space Required by a Compressed Trie

Since each branch node partitions the elements in its subtrie into two or more nonempty
groups, an n element compressed trie has at most #»—1 branch nodes. Therefore, the
space required by each of the compressed trie variants described by us is O(rr), where r
is the trie radix.

‘When compressed tries are represented as hash tables, we need an additional data
structure to store the nonpointer fields of branch nodes. We may use an array for this pur-
pose.

EXERCISES
1. (a). Draw the trie obtained for the following data:

AMIOT, AVENGER, AVRQ, HEINKEL, HELLDIVER, MACCHI,
MARAUDER, MUSTANG, SPITFIRE, SYXKHOI

Sample the keys from left to right one character at a time,

(b) Using single-character sampling, obtain a tric with the tewest number of
levels.

2. Explain how a trie could be used to implement a spelling checker.

Explain how a trie could be used to implement an auto-command completion pro-
gram. Such a program would maintain a lbrary of valid commands. it would then
accept a user command, character by character, from a keyboard. When a
sufficient number of characters had been input to uniquely identify the command,
it would display the complete command on the computer monitor.

4. Write an algorithm to insert a key value x into a trie in which the keys are sampled
from left to right, one character at a lime.

5. Do Exercise 4 with the added assumpticn that the trie is to have no more than six
levels. Synonyms are to be packed into the same element node.

6. Write an algorithm to delete x from a trie under the assumptions of Exercise 4.
Assume that each branch node has a count data member equal o the number of
element nodes in the subtrie for which it is the root.

Do Exercise 6 for the trie of Exercise 5.

8. In the trie of Figure 12.13 the nodes 8, and 8, each have only one child. Branch
nodes with only one child may be eliminated from tries by maintaining a skip data
member with each node. The value of this data member equals the number of
characters 1o be skipped before obtaining the next character to be sampled. Thus,
we can have skip[8;] = 2 and delete the nodes 8, and 8,. Write algorithms to
search, insert, and delete from tries in which each branch node has a skip data

Suffix Trees 593

member.

9. Assume that the branch nodes of a compressed trie are represented using a hash
table (one for each node). Each such hash table is augmented with a count and
skip value as described above. Describe how this change to the node structure
affects the time and space complexity of the trie data structure,

10. Do the previous exercise for the case when each branch node is represented by a
chain in which each node has two data members: pointer and link, where pointer
points to a subtrie and /ink points to the next node in the chain. The number of
nodes in the chain for any branch node equals the number of non-Q pointers in that
node. Each chain is augmented by a skip value. Draw the chain representation of
the compressed version of the trie of Figure 12.6.

124 SUFFIX TREES

12.4.1 Have You Seen This String?

In the classical substring search problem, we are given a string S and a pattern P and are
to report whether or not the pattern P occurs in the string S. For example, the pattern
P = cat appears (twice) in the string S | = The big car ate the small catfish., but does not
appear in the string S 2 = Dogs for sale..

Researchers in the human genome project, for example, are constantly searching
for substrings/patterns (we use the terms substring and pattern interchangeably) in a gene
databank that contains tens of thousands of genes. Each gene is represented as a
sequence or string of letters drawn from the alphabet A,C,G,T. Although most of the
strings in the databank are around 2000 letters long, some have tens of thousands of
letters. Because of the size of the gene databank and the frequency with which substring
searches are done, it is imperative that we have as fast an algorithm as possible to locate
a given substring within the strings in the databank.

We can search for a pattern P in a string § using Program 2.16. The complexity of
such a search is O(IP | +15), where | P | denotes the length (i.c., number of letters or
digits) of P. This complexity looks pretty good when you consider that the pattern P
could appear anywhere in the string S. Therefore, we must examine every letter/digit (we
use the terms letter and digit interchangeably) of the string before we can conclude that
the search pattern does not appear in the string. Further, before we can conclude that the
search pattern appears in the string, we must examine every digit of the pattern. Hence,
every pattern search algorithm must take time that is linear in the lengths of the pattern
and the string being searched.

When classical pattern matching algorithms are used to search for several patterns
Py, Py, *++, P, in the string 5, O(IP, | + IP31 + - + 1P| +k15I) time is taken
(because O(1P; | +15 1) time is taken to seach for P;). The suffix tree data structure that

we are ahont to studv radncee thic ramnlavitu ta (W IR 1 L 1P 1 o ... 12 ID 1 1 1€

Of this time, O(15 |} time is spent setting up the suffix tree for the string §; an individual
pattern search takes only O(1£;1) time (after the suffix tree for § has been built). There-
fore once the suffix tree for § has been created, the time needed to search for a pattern
depends only on the length of the pattern.

12.4.2 The Suffix Tree Data Structure

The suffix tree for S is actually the compressed trie for the nonempty suffixes of the string
5. Since a suffix tree is a compressed trie, we sometimes refer to the tree as a trie and to
its subtrees as subtries.

The (nonempty) suffixes of the string S = peeper are peeper, eeper, eper, per, er,
and r. Therefore, the suffix tree for the string peeper is the compressed trie that contains
the elements (which are also the keys) peeper, eeper, eper, per, er, and r. The alphabet
for the string peeper is e,p,r. Therefore, the radix of the compressed trie is 3. If neces-
sary, we may use the mapping ¢ =0, p —= 1, r = 2, 1o convert from the letters of the
string to numbers. This conversion is necessary only when we use a node structure in
which each node has an array of child pointers. Figure 12.27 shows the compressed trie
(with labeled edges) for the suffixes of peeper. This compressed trie is also the suffix tree
for the string peeper.

epr
AlH|1
//
e/ar/ € r
BE|2 CIH|3 D
E F . H

Figure 12.27: Compressed trie for the suffixes of peeper

Since the data in the element nodes D —I are the suffixes of peeper, each element
node need retain only the start index of the suffix it contains. When the letters in peeper
are indexed from left to right beginning with the index 1, the element nodes D -/ need

Suffix Trees 595

only retain the indexes 6, 2, 3, 5, 1, and 4, respectively. Using the index stored in an ele-
ment node, we can access the suffix from the string S. Figure 12.28 shows the suffix tree
of Figure 12.27 with each element node containing a suffix index.

[

A’H

C{H 3]

123456
S= p!e elpleir’

Figure 12.28: Modified compressed trie for the suffixes of peeper

The first component of each branch node is a reference to an element in that sub-
trie. We may replace the element reference by the index of the first digit of the refer-
enced element. Figure 12.29 shows the resulting compressed trie. We shall use this
modified form as the representation for the suffix tree.

When describing the search and construction algorithms for suffix trees, it is easier
to deal with a drawing of the suffix tree in which the edges are labeled by the digits used
in the move from a branch node to a child node. The-first digit of the label is the digit
used to determine which child is moved to, and the remaining digits of the label give the
digits that are skipped over. Figure 12.30 shows the suffix tree of Figure 12.29 drawn in
this manner.

In the more humane drawing of a suffix tree, the labels on the edges on any root to
element node path spell out the suffix represented by that element node. When the digit
number for the root i< not 1. the humane dArawine nf a anfix tres inclndac 2 haadar nndes

epr

Al
e pf 4 r
B|2|2 C|1|3 D
E F G H
1234586

S=|plele|plejr

Figure 12.29: Suffix tree for peeper

with an edge to the former root. This edge is labeled with the digits that are skipped over.

The string represented by a node of a suffix tree is the string formed by the labels
on the path from the root to that node. Node A of Figure 12.30 represents the empty
string €, node C represents the string pe, and node F represents the string eper.

Since the keys in a suftix tree are of different length, we must ensure that no key is
a proper prefix of another. Whenever the last digit of string S appears only once in §, no
suffix of S can be a proper prefix of another suffix of S. In the string peeper, the last digit
is r, and this digit appears only once. Therefore, no suffix of peeper is a proper prefix of
another. The last digit of data is a, and this last digit appears twice in data. Therefore,
data has two suffixes ata and a that begin with a. The suffix a is a proper prefix of the
suffix ata.

When the last digit of the string § appears more than once in § we must append a
new digit (say #) to the suffixes of § so that no suffix i1s a prefix of another. Optionally, we
may append the new digit to § to get the string $#, and then construct the suffix tree for
S#. When this optional route is taken, the suffix tree has one more suffix (#) than the
suffix tree obtained by appending the svmbol # to the suffixes of 5.

Suffix Trees 597

Figure 12.30 A more humane drawing of a suffix tree

12.4.3 Let’s Find That Substring (Searching a Suffix Tree)

But First, Some Terminology

Let n=15| denote the length (i.e., number of digits) of the string whose suffix tree we
are to build. We number the digits of § from left to right beginning with the number 1.
§[i] denotes the ith digit of §, and suffix (i) denotes the suffix S[7] - - - ${n] that begins at
digit i, 1<i<n.

On With the Search
A fundamental observation uised when searching for a pattern P in a string 3 is that P
appears in 5 (i.e., P is a substring of §) iff P is a prefix of some suffix of 5.

Suppose that P=P[1} --- Plk] = S[i] - S[i+k—1]. Then, P is a prefix of
suffix (i). Since suffix (i) is in our compressed trie (i.e., suffix tree), we can search for P by
using the strategy to search for a key prefix in a compressed trie.

Let’s search for the pattern P = per in the string § = peeper. Imagine that we have
already constructed the suffix tree (Figure 12.30) for peeper. The search starts at the root
node A. Since P[1] = p, we follow the edge whose label begins with the digit p. When
following this edge, we compare the remaining digits of the edge label with successive
digits of P. Since these remaining label digits agree with the pattern digits, we reach the
branch node C. In getting to node C, we have used the first two digits of the pattern. The
third digit of the pattern is r, and so, from node C we follow the edge whose 1abel begins
with r. Since this edge has no additional digits in its label, no additional digit comparis-
ons are done and we reach the element node /. At this time, the digits in the pattern have
been exhausted and we conclude that the pattern is in the string. Since an element node

is reached, we conclude that the pattern is actually a suffix of the string peeper. In the
actual suffix tree representation (rather than in the humane drawing), the element node 7
contains the index 4 which tells us that the pattern P = per begins at digit 4 of peeper
(i.e., P = suffic (4)). Further, we can conclude that per appears exactly once in peeper;
the search for a pattern that appears more than once terminates at a branch node, not at
an element node.

Now, let us search for the paitern P = eeee. Again, we start at the root. Since the
first character of the pattern is e, we follow the edge whose label begins with ¢ and reach
the node B. The next digit of the pattern is also e, and so, from node B we follow the
edge whose label begins with e. In following this edge, we must compare the remaining
digits per of the edge label with the following digits ee of the pattern. We find a
mismatch when the first pair (p,e) of digits are compared and we conclude that the pat-
tern does not appear in peeper.

Suppose we are to search for the pattern P = p. From the root, we follow the edge
whose label begins with p. In following this edge, we compare the remaining digits
(only the digit e remains) of the edge label with the following digits (there aren’t any) of
the pattern. Since the pattern is exhausted while following this edge, we conclude that
the pattern is a prefix of all keys in the subtrie rooted at node C. We can find all
occurrences of the pattern by traversing the subtrie rooted at C and visiting the informa-
tion nodes in this subtrie. If we want the location of just one of the occurrences of the
pattern, we can use the index stored in the first component of the branch node C (see Fig-
ure 12.29). When a pattern exhausts while following the edge to node X, we say that
node X has been reached; the search terminates at node X.

When searching for the pattern P = rope, we use the first digit r of P and reach the
element node D. Since the the pattern has not been exhausted, we must check the
remaining digits of the pattern against those of the key in D. This check reveals that the
pattern is not a prefix of the key in D, and so the pattern does not appear in peeper.

The last search we are going to do is for the pattern P = pepe. Starting at the root
of Figure 12.30, we move over the edge whose label begins with p and reach node €.
The next unexamined digit of the search pattern is p. So, from node C, we wish to follow
the edge whose label begins with p. Since no edge satisfies this requirement, we con-
clude that pepe does not appear in the string peeper.

1244 Other Nifty Things You Can Do with a Suffix Tree

Once we have set up the suffix tree for a string S, we can tell whether or not § contains a
pattern P in O(1P 1) time. This means that if we have a suffix tree for the text of
Shakespeare’s play ‘‘Romeo and Juliet,”” we can determine whether or not the phrase
wherefore art thou appears in this play with lightning speed. In fact, the time taken will
be that needed to compare up to 18 (the length of the search pattern) letters/digits. The
search time is independent of the length of the play.

Suffix Trees 599

Some other interesting things you can do at lightning speed are described below.

Find all occurrences of a pattern P.

This is done by searching the suffix tree for P. If P appears at lcast once, the search ter-
minates successfully either at an element node or at a branch node. When the search ter-
minates at an element node, the pattern occurs exactly once. When we terminate at a
branch node X, all places where the pattern occurs can be found by visiting the element
nodes in the subtrie rooted at X. This visiting can be done in time linear in the number of
occurrences of the pattern if we

(a) Link all of the element nedes in the suffix tree into a chain, the linking is done in
lexicographic order of the represented suffixes (which also is the order in which
the element nodes are encountered in a left to right scan of the element nodes).
The element nodes of Figure 12.30 will be linked in the order EF.GHILD.

(b} Ineach branch node, keep a reference to the first and last element node in the sub-
trie of which that branch node is the root. In Figure 12.30, nodes A, B, and C keep
the pairs (E,D), (E,G), and (H.D, respectively. We use the pair
(firstinformationNode, lastinformationNode) to traverse the element node chain
starting at firstInformationNode and ending at lastInformationNode. This traversal
yields all occurrences of patterns that begin with the string spelled by the edge
labels from the root to the branch node. Notice that when
(firstinformationNode, lastInformationNode) pairs are kept in branch nodes, we
can eliminate the branch node field that keeps a reference to an element node in
the subtrie (i.e., the field elemenrt).

Find all strings that contain a pattern P.

Suppose we have a collection §'1, 82, -+ -, Sk of strings and we wish to report all strings
that contain a query pattern P. For example, the genome databank contains tens of
thousands of strings, and when a researcher submits a query string, we are to report all
databank strings that contain the query string. To answer queries of this type efficiently,
we set up a compressed trie (we may call this a multiple string suffix tree) that contains
the suffixes of the string S 185 28... 85k#, where $ and # are two different digits that do not
appear in any of the strings §1, §2, - -+, Sk. In each node of the suffix tree, we keep a
list of all strings Si that are the start point of a suffix represented by an element node in
that subtrie,

Find the longest substring of S that appears at least m>1 times.
This query can be answered in O(} S |) time in the following way:

(a) Traverse the suffix tree labeling the branch nodes with the sum of the label lengths
from the root and also with the number of information nodes in the subtrie.

h Traveree the anffix trea viciting hranch nadac urith alamant nada anest S

Determine the visited branch node with longest label length.

Note that step (a) needs to be done only once. Following this, we can do step (b)
for as many values of m as is desired. Also, note that when m = 2 we can avoid deter-
mining the number of element nedes in subtries. In a compressed trie, every subtrie
rooted at a branch node has at least two element nodes in it.

Find the longest common substring of the strings S and T.
This can be done intime O(1 S | +17T 1) as below:

(a) Constructa rhultip]e string suffix tree for § and 7 (i.e., the suffix tree for S$T#).

(b) Traverse the suffix tree to identify the branch node for which the sum of the iabel
lengths on the path from the root is maximum and whose subtrie has at least one
information node that represents a suffix that begins in § and at least one informa-
tion node that represents a suffix that begins in 1.

EXERCISES

1. Draw the suffix tree for S = ababab#.
2. Draw the suffix tree for § = acagaa#.
3. Draw the multiple string suffix tree for S | = abba, $ 2 = bbbb, and § 3 = aaaa.

12,5 TRIES AND INTERNET PACKET FORWARDING

12.5.1 1P Routing

In the Internet, data packets are transported from source to destination by a series of
routers. For example, a packet that originates in New York and is destined for Los
Angeles will first be processed by a router in New York. This router may forward the
packel to a router in Chicago, which, in turn, may foward the packet to a router in
Denver. Finally, the router in Denver may forward the packet to los Angeles. Each
router moves a packet one step closer to its destination. A router does this by examining
the destination address in the header of the packet to be routed. Using this destination
address and a collection of forwarding rules stored in the router, the router decides where
to send the packet next.

An Internet router table is a collection of rules of the form (P, NH), where where P
is a prefix and NH is the next hop; MH is the next hop for packets whose destination
address has the prefix P. For example, the rule (01 *,a) states that the next hop for pack-
ets whose destination address (in binary) begins with 01 is a. In IPv4 (Internet Protocol

Internet Packet Forwarding 601

version 4), destination addresses are 32 bits long. So, P may be up to 32 bits long. In
IPv6, destination addresses are 128 bits long and so, P may be up to 128 bits in length.

It is not uncommon for a destination address to be matched by more than t rule in
a commercial router table. In this case, the next hop is determined by the matching rule
that has the longest prefix. So, for example, suppose that (01 *,a) and (G100*,5) are the
only two rules in our router table that match a packet whose destination address begins
with the bit sequence 0100. The next hop for this packet is b. In other words, packet for-
warding in the Internet is done by determining the longest matching-prefix.

Although Internet router tables are dynamic in practice (i.e., the rule set changes in
time; rules are added and deleted as routers come online and go offline), data structures
for Internet router tables often are optimized for the search operation—given a destina-
tion address, determine the next hop for the longest matching-prefix.

12.5.2 1-Bit Tries

A I-bit trie is very similar to a binary trie. It is a tree-like structure in which each node
has a teft child, left data, right child, and right data field. Nodes at level [of the trie store
prefixes whose Iength is {. If the rightmost bit in a prefix whose length is / is 0, the prefix
is stored in the left data field of a node that is at level /; otherwise, the prefix is stored in
the right data field of a node that is at level /. At level i of a trie, branching is done by
examining bit / (bits are numbered from left to right beginning with the number 1) of a
prefix or destination address. When bit i is 0, we move into the left subtree; when the bit
is 1, we move into the right subtree. Figure 12.31(a) gives a set of 8 prefixes, and Figure
12.31(b) shows the corresponding 1-bit trie. The height of a 1-bit tric is (W), where W
is the length of the longest prefix in the router table. Note that W < 32 for IPv4 tables and
W <128 for IPv6 tables. Note also that there is no place, in a 1-bit trie, to store the
prefix * whose length is zero. This doesn’t lead to any difficulty as this prefix matches
every destination address. In case a search of a 1-bit trie fails to find a matching prefix,
the next-hop associated with * is used.

For any destination address d, all prefixes that match d lie on the search path deter-
mined by the bits of 4. By following this search path, we may determine the longest
matching-prefix in (W) time. Further, prefixes may be inserted/deleted in (W) time.
The memory required by a L-bit tric is O(nW), where n is the number of rules in the
router table.

Although the algorithms to search, insert and delete using a 1-bit trie are simpie
and of seemingly low complexity, O(W), the demands of the Internet make the 1-bit trie
impractical. Using trie-like structures, most of the time spent searching for the next hop
goes to memory acceses. Hence, when analyzing the complexity of trie data structures
for router tables, we focus on the number of memory accesses. When a [-bit trie is used,
it may take us up to W memory accesses to determine the next hop for a packet. Recall
that W <32 for IPv4 and W < 128 for IPv6. To keep the Internet operating smoothly, it

Pl =10*

PZ=111%
P3=11001*
P4=1*
P5=0*
P6 = 1000+
P7 = 100000*
P8 = 1000000+
(a) 8 prefixes (b) Corresponding 1-bit trie

Figure 12.31: Prefixes and corresponding 1-bit trie

is necessary that the next hop for each packet be determined using far fewer memory
accesses than W. In practice, we must determine the next hop using at most (say) 6
"MEemory accesses. ‘

12.5.3 Fixed-Stride Tries

Since the trie of Figure 12.31(b) has a height of 7, a search into this trie may make up to
7 memory accesses, one access for each node on the path from the root to a node at level
7 of the trie. The total memory required for the 1-bit trie of Figure 12.31(b) is 20 units
(each node requires 2 units, one for each pair of (child, data) fields). We may reduce the
height of the router-table trie at the expense of increased memory requirement by
increasing the branching factor at each node, that is, we use a multiway trie. The stride
of a node is defined to be the number of bits used at that node to determine which branch
to take. A node whose stride is s has 2° child fields (corresponding to the 2° possible
values for the s bits that are used) and 2* data fields. Such a node requires 2° memory

Internet Packet Forwarding 603

units. In a fixed-stride trie (FST), all nodes at the same level have the same stride; nodes
at different levels may have different strides.

Suppose we wish to represent the prefixes of Figure 12.31(a) using an FST that has
three levels. Assume that the strides are 2, 3, and 2. The root of the trie stores prefixes
whose length is 2; the level two nodes store prefixes whose length is 5 (2 + 3); and level
three nodes store prefixes whose length is 7 (2 + 3 + 2), This poses a problem for the
prefixes of our example, because the length of some of these prefixes is different from the
storeable lengths. For instance, the length of P5 is 1. To get around this problem, a prefix
with a nonpermissible length is expanded to the next permissible length. For example, P5
= 0* is expanded to P5a = 00* and P5b = 01*. If one of the newly created prefixes is a
duplicate, natural dominance rules are used to eliminate all but one occurrence of the
prefix. For instance, P4 = 1* is expanded to P4a = 10* and P4b = 11*. However, P! =
10* is to be chosen over P4a = 10*, because P1 is a longer match than P4. So, Pda is
eliminated. Because of the elimination of duplicate prefixes from the expanded prefix
set, all prefixes are distinct. Figure 12.32(a) shows the prefixes that result when we
expand the prefixes of Figure 12.31 to lengths 2, 5, and 7. Figure 12.32(b) shows the
corresponding FST whose height is 3 and whose strides are 2, 3, and 2.

Since the trie of Figure 12.32(b) can be searched with at most 3 memory accesses,
it represents a time performance improvement over the 1-bit trie of Figure 12.31(b),
which requires up to 7 memory references to perform a search. However, the space
requirements of the FST of Figure 12.32(b) are more than that of the corresponding 1-bit
trie. For the root of the FST, we need 8 fields or 4 units; the two level 2 nodes require 8
units each; and the level 3 node requires 4 units. The total is 24 memory units.

We may represent the prefixes of Figure 12.31(a) using a one-level tric whose root
has a stride of 7. Using such a trie, searches could be performed making a single memory
access. However, the one-level trie would require 27 = 128 memory units.

In the fixed-stride trie optimization (FSTO) problem, we are given a set P of
prefixes and an integer k. We are to select the strides for a k-level FST in such a manner
that the k-Jevel FST for the given prefixes uses the smallest amount of memory.

For some P, a k-level FST may actually require more space than a (k~1)-level
FST. For example, when P = {00*, (1%, 10*, 11*}, the unique 1-level FST for P requires
4 memory units while the unique 2-level FST (which is actually the 1-bit trie for P)
requires 6 memory units. Since the search time for a (k—1)-level FST is less than that for
a k-level tree, we would actually prefer (k—1)-level FSTs that take less {or even equal)
memory over k-level FSTs. Therefore, in practice, we are really interested in determining
the best FST that uses at most k levels (rather than exactly & levels), The modified MSTQ
problem (MFSTOQ) is to determine the best FST that uses at most & levels for the given
prefix set P.

Let O be the 1-bit trie for the given set of prefixes, and let F'be any k-level FST for
this prefix set. Let 5y, - - -, 5, be the strides for F. We shall say that level j, 1 <j <k, of F

J-1 J
covers levels a, -+, b of O, where a=£sq+1 and b = Esq. So, level 1 of the FST of
1 1

P5 00
PS 01
P1 10
/ P4 11
P1=10* 000 Po 000 -
P2a=11100* 001 P6 001 P3
P2b=11101* 010 ~ 010 -
P2c=11110* on - 011 -
P2d=11111* 100 - 100 P2
P3=11001* 101 - 101 P2
P4=11% 110 - 110 P2
P5a = 00* 111 - 111 P2
P5b = 01*
P6a = 10000* P8 00
P6b = 10001* P7 01
P7 = 100000* - 10
P8 = 1000000* - 11
(a) Expanded prefixes (b) Corresponding fixed-stride trie

Figure 12.32: Prefix expansion and fixed-stride trie

Figure 12.32(b) covers levels 1 and 2 of the 1-bit trie of Figure 12.31(b). Level 2 of this
FST covers levels 3, 4, and 5 of the 1-bit trie of Figure 12.31(b); and level 3 of this FST

covers levels 6 and 7 of the 1-bit trie. We shall refer to levels e,‘=zsq, 1 <u<kas the
1

expansion levels of O. The expansion levels defined by the FST of Figure 12.32(b) are 1,
3,and 6.

Let nodes (i) be the number of nodes at level of the 1-bit trie Q. For the 1-bit trie
c}‘f Figure 12.31(a), nodes(1:7) = [1,1,2,2,2,1,1]. The memory required by F is

Y nodes (eq)*z‘v. For example, the memory required by the FST of Figure 12.32(b) is
!
nodes (1)%22 + nodes (3)*2° + nodes (6)*2° = 24.

Internet Packet Forwarding 605

Let T(j,r) be the best (i.e., uses least memory) FST that uses at most r expansion
levels and covers levels 1 through j of the 1-bit trie 0. Let C(j,r} be the cost (i.e.,
memory requirement) of T'(j,r). So, T(W,k) is the best FST for O that uses at most &
expansion levels and C(W,k) is the cost of this FST. We observe that the last expansion
level in T{j,r) covers levels m + 1 through j of O for some m in the range O through
j — 1 and the remaining levels of this best FST define T(m,r—1). So,

Cy.r) =0r£ﬂiEj{C(m,r—])+nqdes(m +1#2) i1 >] (12.1)

CO.r)=0andCG H=2,j>1 (12.2)

Let M (j,r), r > 1, be the smallest m that minimizes
C(m,r—1) + nodes (m +)2+

in Eq. 12.1. Egs. 12.1 and 12.2 result in an algorithm to compute C(W,k) in O(kW?).
The M (j,r)s may be computed in the same amount of time while we are computing the
C(j.r)s. Using the computed M values, the strides for the optimal FST that uses at most &
expansion levels may be determined in an additional (k) time.

12.5.4 Variable-Stride Tries

In a variable-stride trie {(VST) nodes at the same level may have different strides. Figure
12.33 shows a two-level VST for the 1-bit trie of Figure 12.31. The stride for the root is
2; that for the left child of the root is 5; and that for the root’s right child is 3. The
memory required by this VST is 4 (root) + 32 {left child of root) + 8 (right child of root)
=44,

Since FSTs are a special case of VSTs, the memory required by the best VST for a
given prefix set P and number of expansion levels k is less than or equal to that required
by the best FST for P and &.

Let ~-VST be a VST that has at most r levels. Let Opt(N,r) be the cost (ie.,
memory requirement) of the best r-VST for a 1-bit trie whose root is N. The root of this
best VST covers levels 1 through 5 of O for some s in the range t through height (N) and
the subtnes of this root must be best (r—1)-VSTs for the descendents of & that are at
level 5 + 1 of the subtree rooted at N. So,

Opt(Nory= min {2°+ Y OptiM,r-1}}, r>1| (12.3)
1<s2height (V) MeDoy (N}

where D.(N) is the set of all descendents of N that are at level s of V. For example,

P5 00

P5 01

P1 10

P4 ~11
00000 P8 000 -
00001 P7 001 P3
00010 P6 010 -
00011 P6 011 -
00100 P6 100 P2
00101 P6 101 p2
00110 P6 110 P2
00111 P6 111 P2

1100 -
11104 -
1110 -
11111 -

Figure 12.33: Two-level VST for prefixes of Figure 12.31(a)

D3 (N) is the set of children of N and D;(N} is the set of grandchildren of N. height (N)
is the maximum level at which the trie rooted at N has a node. For example, in Figure
12.31(b), the height of the trie rooted at N1 is 7. When r=1,

Opt (N, 1)=2heighi ™) _ (12.4)

OptiNsry= Y Opt(M,r),s>1,r>1,
MeD,(N)

and let Opr (N, 1,r)=0pt (N,r}). From Eqs. 12.3 and 12.4, it follows that:

Internet Packet Forwarding 607

Opt(N,1,r)= min {2Z+0pt(Ns+1,r-1)}, r>1 (12.5)

1<s<height (N)
and
Opt (N, 1,1} = 2height N}, (12.6)

Fors > 1 and r > I, we get

Opt(N.s,r)= Y}, Opt(M,r)
MeDN)

= Opt (LeftChild (N),s—1,r)

+ Opt (RightChild (N),s—1,r}. (12.7)

For Eq. 12.7, we need the following initial condition:
Opt (null, *,*) =0 (12.8)

For an n-rule router table, the 1-bit trie O has O(nW) nodes. So, the number of
Opt (*, *,*) values is O(nW?k). Each Opt(*,5,%), s > 1, value may be computed in O(1)
time using Eqs. 12.7 and 12.8 provided the Opt values are computed in postorder. The
Opt (¥, 1,*) values may then be computed in O(W) time each using Egs. 12.5 and 12.6.
Therefore, we may compute Opt(R.k) = Opt(R, 1,k), where R is the root of 0, in
O(nW?k) time. If we keep track of the s that minimizes the right side of Eq. 12.5 for
each pair (N,r), we can determine the strides of all nodes in the optimal &-VST is an
additional O(nW) time.

EXERCISES

1. (a) Write a C function to compute C(j.r)for 0<j<Wand | <r <k using Egs.
12.1 and 12.2. Your function shouid compute M (j,r) as well. The complex-
ity of your function should be O(kW?). Show that this is the case.

{(b) Write a C function that determines the strides of all levels in the best FST
that has at most & levels. Your function should use the M values computed in
part (a). The complexity of your function should be O(k). Show that this is
the case.

2. {a)y Write a C function to compute Opt(N,s,r) for 1 s <W, 1 <r<k and all
nodes N of the I-bit trie O. You should use Egs. 12.5 through 12.8. Your
function should compute S (¥,r), which is the s value that minimizes the
right side of Eq. 12.5, as well. The complexity of your function should be
O(nW?2k), where # is the number of rules in the router table. Show that this
is the case.

(b) Write a C function that determines the strides of all nodes in the best k-VST
for 0. Your function should use the § values computed in part (a). The com-
plexity of your function should be O{nW). Show that this is the case.

12.6 REFERENCES AND SELECTED READINGS

Digital search trees were first proposed by E. Coffman and J. Eve in CACM, 13, 1970, pp.
427-432. The structure Patricia was developed by D. Morrison. Digital search trees,
tries, and Patricia are analyzed in the book The Art of Computer Programming: Sorting
and Searching , Second Edition, by ID. Knuth, Addison-Wesley, Reading, MA, 1998.

You can learn more about the genome project and genomic applications of pattern
matching from the following Web sites: http://www.nhgri.nih.gov/HGP/ (NiH’s Web

site for the human genome project);
http://www.ornl.gov/TechResources/Human_Genome/home html (Department of
Energy’s Web site for the human genomics project); and

http://merlin.mber.bem.tme.edu:8001/bed/Curric/welcome html; (Biocomputing Hyper-
text Coursebook).

Linear time algorithms to search for a single pattern in a given string can be found
in most algorithm’s texts. See, for example, the texts: Computer Algorithms, by E.
Horowitz, S. Sahni, and S. Rajasekeran, Computer Science Press, New York, 1998 and
Introduction to Algorithms, Second Edition, by T. Cormen, C. Leiserson, R. Rivest and
C. Stein, McGraw-Hill Book Company, New York, 2002.

For more on suffix tree construction, see the papers: ‘A space economical suffix
tree construction algorithm,”” by E. McCreight, Journal of the ACM, 23, 2, 1976, 262-
272, *‘Fast string searching with suffix trees,”” by M. Nelson, Dr. Dobb's Journal, August
1996. and ‘‘Suffix trees and suffix arrays,” by S. Aluru, in Handbook of data structures
and applications, D. Mehta and S. Sahni, editors, Chapman & Hall/CRC, 2005.

You can download «code to construct a suffix tree from
http:/fwww.ddj.com/fip/1996/1996.08/suffix zip.

The use of fixed- and variable-stride tries for IP router tables was first proposed in
the paper ‘‘Faster IP lookups using controlled prefix expansion,”” by V. Srinivasan and
G. Varghese, ACM Transactions on Computer Systems, Feb., 1999. Our dynamic pro-
gramming formulations for fixed- and variable-stride tries are from ‘‘Efficient construc-
tion of multibit tries for IP lookup,”” by S. Sahni and K. Kim, IEEE/ACM Transactions

References and Selected Readings 609

on Networking, 2003, For more on data structures for IP router tables and packet
classification, see ‘‘IP router tables,” by S. Sahni, K. Kim and H. Lu and ‘‘Multi-
dimensional packet classification,”” by P. Gupta, in Handbook of data structures and
applications, D. Mehta and S. Sahni, editors, Chapman & Hall/CRC, 2005.

INDEX

Abstract data type Ackermann’s function, 17, 255
array, 51-52 Activity network, 315-330
bag, 21 Adelson-Velskii, G., 493, 531
binary tree, 197-199 Aghili, H., 421
definition, 19 Algorithm
dictionary, 231 amortized complexity, 434
graph, 265-271 definition, 8
natural number, 20-21 performance analysis, 22-44
polynomial, 64-66 performance measurement, 44-50
priority queue, 223 recursive, 14-16
queue, 114-115 space complexity, 22-25
set, 21 specification, 8-18
sparse matrix, 72-74 time complexity, 25-32
stack, 107-108 Alury, S., 608
string, 87 Amortized complexity, 434

610

Arithmetic expression, 127-138
Array
abstract data type, 51-52
column major, 85
doubling, 113
dynamic, 55-58
in C, 52-55
representation, 52-55, 85-86
row major, 85
Articutation point, 286
Arvind, A., 479
Asymptotic notation
big oh, 35
omega, 36
theta, 37
Atkinson, M., 479
Available space list, 166-167
AVL-tree, 491-505

B-tree, 535-551

B*-tree, 551

B+-tree, 551-560

Bag, 21

Balance factor, 494

Bayer, R., 560

Bellman, R., 307

Biconnected component, 286-291

Big O, 35

Binary search, 10-15, 37

Binary search tree
AVL, 491-505
definition, 231-232
delete, 235-236
efficient, 481-531
height, 237
insert, 234-235
joining, 236-237
optimal, 481-491
red-black, 506-518
searching, 232-234
splay, 518-531
splitting, 236-239

Index 611

Binary tree
abstract data type, 197-199
AVL, 491-505
balanced, 493
complete, 201
extended, 424, 483
full, 201
heap, 222-231
height brlanced, 493
number of, 259-264
optimal binary search tree, 481-491
properties, 199-201
red-black, 506-516
representation, 202-205
search tree, 231-239
selection tree, 240-243
splay, 518-531
skewed, 198
threaded, 216-221
traversal, 205-211
Binary trie, 563
Binomial coefficient, 14
Binomial heap, 433-442
Binomial tree, 439
Bloom filter, 416-420
Breadth first search, 281-283
Breadth first spanning tree, 234
Brodal, G., 480
Buffering, 381-387

Carlsson, S., 479
Castelluccia, C., 421
Chain, 146, 149-154, 171
Chang, F., 421

Chang, S., 479

Cheriton, D., 478

Cho, S., 478, 480

Chong, K., 480

Circular lists, 166-168, 172
Coffman, E., 608

Comer, D., 560
Complementary range search, 475-478

Complexity

amortized, 434

asymptotic, 33-41

average, 32

best, 32

practical, 41-44

space, 22-25

time, 25-33

worst, 32
Compressed trie, 564
Connected component, 270, 283
Constructor, 19
Cormen, T., 50, 98, 608
Count sort, 372
Coxeter, H., 38
Crane, C., 478, 531
Creator, 19
Critical path, 323

Data abstraction, 18-21

Data type, 18

Deap, 479 -

Depth first search, 279-281

Depth first spanning tree, 284

Deque, 119, 188

Differential files, 416-418

Digital search tree, 561-609

Dijkstra’s algorithm, 301

Ding, Y., 479, 480

Disjoint sets, 247-259

Du, M., 479

Dynamic hashing
directory-based, 411-414
directoryless, 414-416
motivation, 410-411

Dynamic memory allocation, 5-7

Equivalence relation, 174
Equivalence class, 174-178
Euler, L., 265

Eulerian walk, 267

Eve, J., 608

Extended binary tree, 424, 483
External node, 424, 483
External path length, 483

Failure function, 95
Falk, J., 50
Feng, W., 421
Fibonacci heap, 442-452
Fibonacci number, 14, 17
Ford, 307
Forest
binary tree representation, 245-246
definition, 244
traversals, 246
Fredman, M., 478, 479
Fuller, §., 531

Gabow, H., 479

Galil, Z., 479

Gehani, N., 50

Genealogical chart, 192

Gonzalez, T, 409, 410

Graham, R., 330

Graph
abstract data type, 265-271
activity network, 315-330
adjacency matrix, 272-273
adyacency lists, 273-275
adjacency multilists, 275-276
articulation point, 286
biconnected component, 286-291
bipartite, 291, 331
breadth first search, 281-283
bridge, 332
complete, 268
connected component, 270, 283
critical path, 323
cycle, 269
definitions, 267-272
depth first search, 279-281
diameter, 331
digraph, 271

directed, 267

Eulerian walk, 267
incidence matrix, 332
inverse adjacency lists, 275
multigraph, 268
orthogonal lists, 276

path, 269

radius, 331

representation, 272-276

shortest path, 299-309, 447-448

spanning tree, 284-285, 292-298
strongly connected, 270
subgraph, 269

transitive closure, 310-312
undirected, 267

Index 613

extendible, 410-416

hash function, 392, 398-401

overflow handling, 401-406

static, 396-410

theoretical evaluation, 407-408
Heap

binomial, 433-442

definition, 224

deletion, 228-229

Fibonacci, 442-450

insertion, 225-227

interval, 469-478

max, 224

min, 224

min-max, 477

Greedy method, 292
Gupta, P., 609

Hash function

pairing, 450-458

skewed, 433

sort, 352-356

symmetric min-max, 458-469

digit analysis, 400
division, 398-399
folding, 399
mid-square, 399
synonym, 396
uniform, 398

Hash table

bucket, 306

chained, 405-406

collision, 396

hash function, 392, 398-401
identifier density, 396

key density, 396

linear open addressing, 401-404
linear probing, 401-404
loading density, 396

open addressing, 401-405
overflow, 396

quadratic probing, 404
random probing, 409
rehashing, 404

Hashing

dynamic, 410-416

Height balanced tree, 493
Hell, P., 330

Hill, T., 42i

Horner s rule, 17
Horowitz, E., 50
Huffman code, 391
Huffman tree, 392

Iacono, 1., 479

Infix notation, 129

Inorder, 206-208, 209

Insertion sort, 337-340

Internat path length, 483

Internet packet forwarding, 600-608
Intervat heap, 469-478

Kaner, C., 50

Karlton, P, 531

Kim, K., 608, 609

Knight’s tour, 104-106

Knuth, D., 98, 264, 394, 407, 420, 531,
608

Koehler, E., 531

Konigsburgh bridge problem, 265
Kruskal s algorithm, 292-296
Kumar, A., 421

Landis, E., 493, 531
Landweber, L., 142, 143
Leftist tree
height biased, 424-428
weight biased, 428-432
Legenhausen, 106
Leiserson, C., 50, 98, 608
Level order, 209-210
Li, K., 421
Li, L., 421
Linear list, 64
Linear open addressing, 401-404
Linear probing, 401-404
List sort, 361-365
Lists
available space list, 166-167
chain, 146, 149-154, 171
circular, 166-168, 172
delete, 152, 166-168
doubly linked, 186-188
FIFO, 114
header node, 167, 187
LIFO, 107
linear, 64
linked, 145-190
ordered, 64
singly linked, 146
verification, 335
Lohman, G., 421
Loser tree, 243
Lu, H., 609

m-way search tree, 532-535
MacLaren, M., 363
Magic square, 38-40
Matrix
addition, 28-31, 37
band, 100-101

delete, 185
input, 181-184
linked representation, {78-180
multiplication, 33, 79-83
output, 184
saddle point, 99
sequential representation, 74-75
sparse, 72-84
transpose, 76-79
triangular, 99
tridiagonal, 100
Max tree, 224
Maze, 120-125
McCreight, E., 560, 608
Mehthomn, K., 531
Mehta, D., 50, 264, 420, 480, 531, 560,
608, 609
Merge sort, 346-352
Merging
2-way, 346-347
k-way, 379-381
Min-max heap, 479
Min tree, 224
Moret, 479
Morin, P., 420
Morris, R., 98
Morrison, D., 608
Multiway tries, 571-593
Mutaf, P., 421

Natural number, 20-21
Nelson, M., 608
Network
AQE, 320-328
AQV, 315-320
Nguyen, H., 50
Nievergelt, J., 531

Observer, 20
Olariu, S., 479
Olson, S., 103
Omega notation, 36

Optimal merge pattern, 388-394
Ordered list, 64
Overflow handling
chaining, 405-406
linear open addressing, 401-404
linear probing, 401-404
open addressing, 401-405
quadratic probing, 404
random probing, 409
rehashing, 404
theoreticat evaluation, 407-408
Overstreet, C., 479

Pairing heap, 450-458
Palindrome, 159
Pandu Rangan, C., 479
Partial order, 315
Patricia, 564-570
Pattern matching, 90-97
Performance analysis, 22-44
Performance measurement, 44-50
Permutation, 15-16, 38
Pigeon hole principle, 17
Pointers, 4-5, 7-8
Polynomial
abstract data type, 64-66
addition, 69-71, 161-165
circular list, 166-168
erasing, 165
representation, 66-69, 160-161
Postfix notation, 129-132
Postorder, 208-209
Pratt, V., 98
Precedence relation, 315
Prefix notation, 138
Preorder, 208
Prim’s algorithm, 296-297
Priority queue
abstrtact data type, 223
Binomial heap, 433-442
double-ended, 423-424
Fibonacci heap, 442-450

Index 615

interval heap, 469-478

leftist tree, 424-433

max heap, 224-229

min heap, 224

pairing heap, 450-458

single-ended, 222-224

symmetric min-max heap, 458-469
Propositional calculus, 213-215

Quadratic probing, 404
Queue
abstract data type, 114-115
circular, 117-120
FIFO, 114-120
linked, 156-159
multiple, 138-141, 156-159
priority, 222-224, 422-480
sequential, 114-120
Quick sort, 340-343

Radix sort, 356-361
Rajasekaran, S., 50
Rawilins, G., 50
Rebman, M., 106
Red-black tree, 506-516
Relation
equivalence, 174
trreflexive, 315
precedence, 315
reflexive, 174
symmetric, 174
transitive, 174
Reporter, 20
Rivest, R., 50, 98, 608
Run
generation, 387-388
merging, 388-394

Sack, 1.,479

Saddle point, 99

Sahni, S., 50, 264, 420, 478, 480, 531,
560, 608, 609

Santoro, N., 479
Satisfiability, 213-215
Scroggs, R., 531
Searching
binary search, 10-15
binary search tree, 231-239
interpolation search, 334-335
sequential search, 333-334
Sedgewick, R., 479
Selection sort, 9-11, 45
Selection tree
loser tree, 243
winner tree, 241-243
Set representation, 247-259
Severence, D., 420, 421
Shapiro, 479
Shortest path problem
all pairs, 307-310
single source, 300-307, 447-448
Sleator, D., 531
Sollin s algorithm, 297-298
Sorting
bubble sort, 375
complexity, 343-345
count sort, 372
external, 336, 376-394
heap sort, 352-356
insertion sort, 337-340
internal, 336
list sort, 361-365
fower bound, 343-345
merge sort, 346-352
quick sort, 340-343
radix sort, 356-361
runtime, 370-372
selection sort, 9-11, 45
stable sort, 336
table sort, 365-370
topotogical sort, 317-320
Spanning tree
breadth first, 284
depth first, 28 °

minimum cost, 292-298
Spencer, T.. 479
Splay tree, 518-531
Srinivasan, A, 421
Srinivasan, V., 608
Stack
abstract data type, 107-108
linked, 156-159
multiple, 139-141, 156-159
sequential, 107-113
systen, 108-109
Stasko, 1., 479
Stein, C., 50, 98, 608
Step count
average, 32
best case, 32
worst case, 32
String, 87-97
Strothotte, T., 479
Suffix tree, 593-600
Swamy, M., 330
Symmetric min-max heap, 458-469
System life cycle '
analysis, 2
design, 2
refinement and coding, 3
requirements, 2
verification, 3

Table sort, 365-370
Tarjan, R., 330, 478, 479, 531
Test data, 48-50
Theta notation, 36
Thulasiraman, K., 330
Topological order, 317
Topological sort, 317-321
Towers of Hanoi, 17 18
Transformer, 19
Transitive closure, 310-312
Tree

AVL, 491-505

B-tree, 535-551

B*-tree, 551

B-+-tree, 551-560
binary, 197-222
binomial, 439
definition, 192

degree, 193

depth, 194

digital, 561-609
height, 194

Huffman, 392

leftist, 424-433

m-way search, 532-535
of losers, 243

of winners, 241-243
red-black, 506-516
representation, 195-196
search tree, 231-239
selection tree, 240-243
spanning tree, 284-285, 292-298
splay tree, 518-531
suffix, 593-600
terminology, 191-195
trie, 563-600

2-3,535

2-3-4, 536

union-find, 247-256

Trie

binary, 563

compressed binary, 564
compressed multiway, 571-593
fixed stride, 602-605

internet packet forwarding, 600-608

1-bit, 601-602
multiway, 571-593
Patricia, 564-570
suffix tree, 593-600
variable stride, 605-607
2-3 tree, 535
2-3-4 tree, 536

Union-find tree
collapsing rule. 253
height rule, 258
path halving, 258
path splitting, 258
weighting rule, 250

Van Leeuwen, J., 255, 479
Varghese, G., 608
Vitter, 1., 479

Wang, 1., 421
Warnsdorff, 1., 104
Weiss, M., 479, 480
Wen, Z.,479
Williams, J., 479
Winner tree, 241-243
Wood, D., 479

Xu, J.. 421

Zhang, D., 560

Index 617

